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Motivating problem:  
Community detection 

 Determine groupings of data objects given sets of 
relationships amongst those objects 

 Relationships may be represented in a graph or hypergraph 
 Graphs represent pairwise relationships 

 Hypergraphs represent relationships among groups of things 

 Applications 
 Finding emerging research trends from documents (Jung et al., 2014) 

 Clustering categorical data (Gibson et al., 2000) 

 Image segmentation (Agarwal et al., 2005) 

 Metabolic networks (Guimera et al., 2004) 
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Outline 

 Introduction to hypergraphs 

 Description of spectral clustering algorithm 

 Exploration of eigenvalue problems occurring in spectral 
clustering 

 Spectral clustering results 
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• Explore the usage of hypergraphs to model relational data 

 

• Understand how to effectively use eigensolvers in spectral 

analysis of this data  



What is a hypergraph? 

 

 

 

 

 

 

 

 

 Generalization of graph 
 Hyperedges represent multiway relationships between vertices 

 A hyperedge is a set of vertices of arbitrary size 

 Hyperedges can connect more than 2 vertices 
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What is a hypergraph? 

 

 

 

 

 

 

 

 Multiway relationships can be represented nonambiguously 
 Did A, B, and C write a paper together? 

 Relational data is hypergraph incidence matrix 
 One way to represent a hypergraph as a graph: clique expansion 
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Hypergraph clique expansion 
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𝐸𝑔 =  
𝑑 𝑒ℎ
2

𝑒ℎ∈𝐸ℎ

 

𝑑 𝑒ℎ : 

hyperedge cardinality 



Weighted hypergraph clique expansion 
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𝑤 𝑒𝑔 =
1

𝑑 𝑒ℎ − 1
 

𝑑 𝑒ℎ : 

hyperedge cardinality 



 

 

 

 

 

 

 Hypergraphs require significantly less storage space than 
graphs generated using clique expansion 
 
 

 Hypergraphs require fewer operations for a matrix-vector 
multiplication 

Computational advantages of  
hypergraphs 

8 

1 1 

1 

1 1 

1 1 

1 1 V
e
rt

ic
e
s
 

Graph Incidence matrix 

1 ⅓ ⅓ ⅓ 

1 

½ ½ ⅓ ⅓ ⅓ 

½ ½ ⅓ ⅓ ⅓ 

½ ½ ⅓ ⅓ ⅓ 

Hypergraph incidence matrix 

𝐸𝑔 =  
𝑑 𝑒ℎ
2

𝑒ℎ∈𝐸ℎ

 



How do we detect communities in 
graphs and hypergraphs? 

 One way: spectral clustering (Ng, et al., 2002) 
 Compute the smallest eigenpairs of the normalized graph or 

hypergraph Laplacian* 

 

 

 

 

 Laplacian is never explicitly formed 

𝐿𝐺 = 𝐼 − 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2 ∈ ℝ𝑛×𝑛 

𝐿𝐻 = 𝐼 − 𝐷𝑣
−1 2 𝐻ℎ𝐷𝑒

−1𝐻ℎ
𝑇𝐷𝑣
−1 2 ∈ ℝ𝑛×𝑛 
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How do we detect communities in 
graphs and hypergraphs? 

 Spectral clustering (Ng, et al., 2002) 
 Compute the smallest eigenpairs of the normalized graph or 

hypergraph Laplacian (Zhou, et al., 2006) 

 

 

 
 

 Perform k-means clustering on those eigenvectors 

 Partition a set of observations into clusters in which each observation 
belongs to the cluster with the nearest mean 

 Quality of our results is measured using the Jaccard index 
 T = true cluster assignments 

 P = predicted cluster assignments  

𝐿𝐺 = 𝐼 − 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2  

𝐿𝐻 = 𝐼 − 𝐷𝑣
−1 2 𝐻ℎ𝐷𝑒

−1𝐻ℎ
𝑇𝐷𝑣
−1 2  
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 Parameters 
 Clusters 

 Nodes per cluster 

 Intra-cluster hyperedges 

 Inter-cluster hyperedges 

 Hyperedge cardinalities 

 Intra-cluster 

 Inter-cluster 

 We also generate a ground truth 
clustering vector 

 We may generate multiple  
instances with the same set of 
parameters Incidence Matrix:  
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EFFECTIVE USE OF EIGENSOLVERS 
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Experimental results 

 Experiments were conducted on a 24 core machine with 128 
GB of memory using 16 MPI processes 

 Runtime parameters 
 10 randomly generated hypergraphs of each type 

 

 

 

 

 

 5 k-means trials per matrix 

 Eigensolver: LOBPCG (available in Trilinos) 

 Number of computed eigenpairs: same as number of clusters* 

 Tolerance: 1e-3* 
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G1 G2 G3 

Number of clusters 10 5 10 

Nodes per cluster 10,000 10,000 10,000 

Intra/Inter-cluster hyperedges 40,000 / 50,000 20,000 / 200,000 20,000 / 200,000 

Intra/Inter-cluster h-edge cardinality 5 / 5 10 / 3 5 / 5 

*unless otherwise stated 



How do graph and hypergraph  
results compare? 

G3  

Graph Hypergraph 

k-means iterations 79.4 28.1 

LOBPCG iterations 15.6 8.9 
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How do graph and hypergraph  
results compare? 

G2 

Graph Hypergraph 

k-means iterations 56.8 5.4 

LOBPCG iterations 31.1 6.5 
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eigensolver

k-means

Number of clusters 5 

Nodes per cluster 10,000 
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How do graph and hypergraph  
runtimes compare? 
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Number of clusters 5 

nodes per cluster 10,000 

Intra/Inter-cluster 

hyperedges 

40,000 

50,000 

Jaccard index was always 1 

• Runtime ratio:  

 

 

 

• Large numbers: bad 

graph runtime

hypergraph runtime
 



How many eigenvectors should we 
calculate? 
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Less noisy data: G1 Number of clusters 10 

Nodes per cluster 10,000 
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How many eigenvectors should we 
calculate? 
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How many eigenvectors should we 
calculate? 
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Noisier data: G3 Number of clusters 10 

Nodes per cluster 10,000 

Intra/Inter-cluster 

hyperedges 

20,000 

200,000 

Intra/Inter-cluster  

h-edge cardinality 

5 
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What tolerance should we use? 
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G3 Number of clusters 10 

Nodes per cluster 10,000 

Intra/Inter-cluster 

hyperedges 
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eigenvectors for tolerance of 10-1 were random 



Conclusions 

 Graph vs hypergraph 
 Preliminary results suggest a dramatic runtime difference between 

eigensolver computation for graph and hypergraph case 

 Larger Jaccard indices for hypergraph over graph for several problem 
classes 

 Eigensolver 
 Low tolerances are acceptable 

 Choice of number of eigenvectors is very important 

 LOBPCG is effective for problems we studied 

 Currently exploring real world problems where hypergraphs 
may be a better choice 
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